Formulas

Parallelogram	Area = bh	Prism	Volume = Bh $Surface Area = 2B + Ph$
Triangle	$Area = \frac{1}{2}bh$	Right Cylinder	Volume = $\pi r^2 h$ Surface Area = $2\pi r^2 + 2\pi rh$
Trapezoid	$Area = \frac{1}{2}h(b_1 + b_2)$	Sphere	$Volume = \frac{4}{3}\pi r^3$ $Surface \ Area = 4\pi r^2$
Circle	$Area = \pi r^2$ $Circumference = \pi d$ or $Circumference = 2\pi r$	Right Cone	Volume = $\frac{1}{3}\pi r^2 h$ Surface Area = $\pi r \ell + \pi r^2$
General Equations	$Ax + By = C$ $y = mx + b$ $y - y_1 = m(x - x_1)$ $(x - h)^2 + (y - k)^2 = r^2$	Square Pyramid Pythagorean Theorem	Volume = $\frac{1}{3}Bh$ Surface Area = $\frac{1}{2}P\ell + B$ $a^2 + b^2 = c^2$
Slope Formula Distance	$m = \frac{y_2 - y_1}{x_2 - x_1}$	Right Triangle Relationships	$ \begin{array}{c cccc} 30^{\circ} & 60^{\circ} & 90^{\circ} \\ x & x\sqrt{3} & 2x \end{array} $ $ \begin{array}{c ccccc} 45^{\circ} & 45^{\circ} & 90^{\circ} \end{array} $
Formula	$D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		x x $x\sqrt{2}$
Midpoint Formula	For a line segment with endpoints (x_1, y_1) and (x_2, y_2) the midpoint is $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$	Trigonometric Ratios	$\sin A = \frac{opposite}{hypotenuse}$ $\cos A = \frac{adjacent}{hypotenuse}$ $\tan A = \frac{opposite}{adjacent}$